

THE BUNCAN CENTER

DOVER, DELAWARE

RACHEL GINGERICH, STRUCTURAL OPTION
SENIOR THESIS PRESENTATION
APRIL 15, 2008

PRESENTATION OUTLINE

- A. Building Introduction
- B. Existing Steel Structural System
- C. Proposal Introduction
- D. Depth/Proposed Concrete Structural System
- E. Construction Management Breadth
- F. Acoustics Breadth
- G. Proposal Recommendation

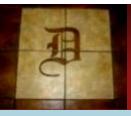
BUILDING STATISTICS

Location: Dover, Delaware

Area: 76, 557 SF

Height: 93'-0"

Stories: 6 total


~Floor to floor height of 14'-0"

~5 floors and a penthouse on the top floor

~ Balconies on 4th and 5th floors

Personal Photo: Taken August 16, 2007

BUILDING STATISTICS

Floor Occupancies

~1st-4th Floor:

Open Flex Office Spaces

~5th Floor:

"The Outlook Center" Ballroom

~6th Floor:

Management Offices

Mechanical Rooms

~Basement:

Mechanical Room

Electrical Room

Personal Photo: Taken August 16, 2007

BUILDING CONSTRUCTION

Overall Project Cost:

\$10.7 million

Additional Tenant Fit-Out Cost:

\$46,000

Construction Start Date:

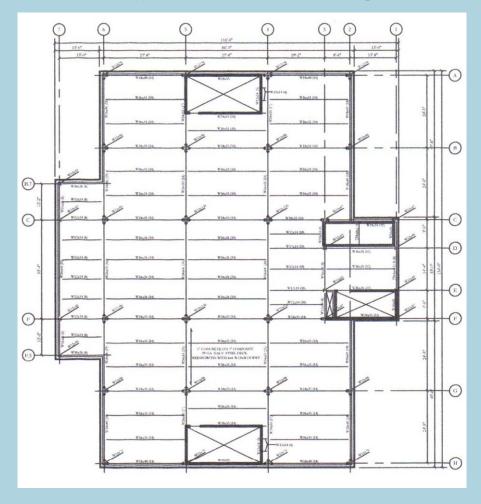
June 2003

Construction End Date:

June 2004

Project Delivery Method:

Design-Build


Photo by Jackson Architects: Taken July 23, 2003

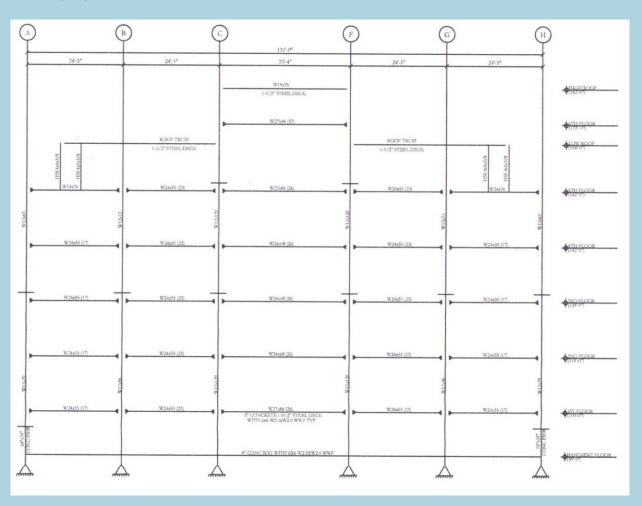
EXISTING FRAMING SYSTEM

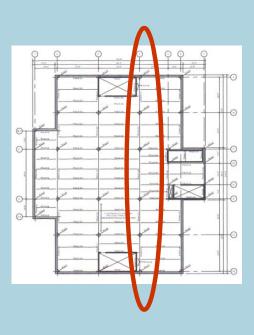
- ~5" concrete on 2" composite metal deck
- ~24'x27' typical bays of composite beams and girders

EXISTING LATERAL SYSTEM

- ~Steel Moment Frames
- ~Flange welded/web bolted connections

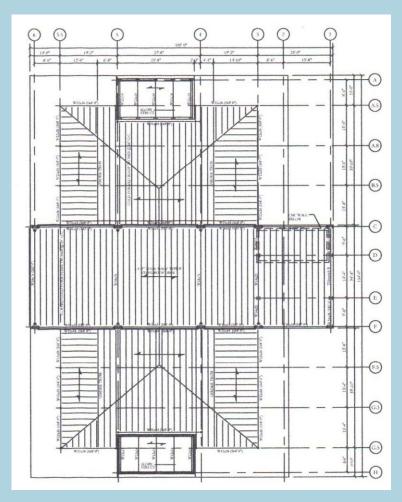
Personal Photo: Taken August 16, 2007




EXISTING LATERAL SYSTEM

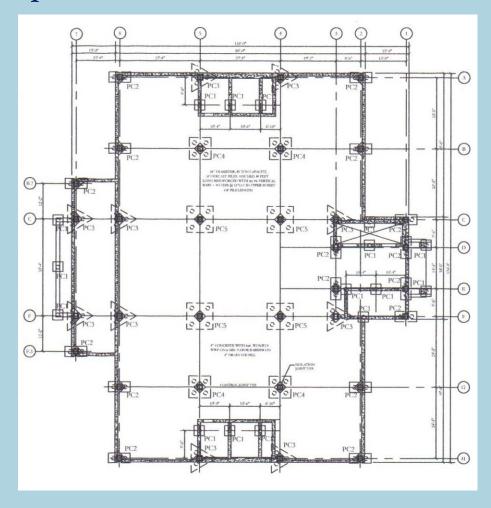
North-South Direction

Line 4



EXISTING ROOF FRAMING PLAN

- ~Cold formed roof trusses spaced @ 24" o.c.
- \sim 1-1/2" metal roof deck



EXISTING FOUNDATION PLAN

- ~16" dia. augercast piles with pile caps; 85 ton compressive capacity
- ~24"x24" concrete piers

- ~Two-way flat plate slab found to be comparative to existing in Technical Assignment #2
- ~Eliminate moment connections
- ~Eliminate fireproofing
- ~Increase mechanical cavity space
- ~Reduce cost
- ~Reduce Schedule
- ~Improve acoustics for ballroom
- ~Improve acoustics for floors adjacent to the ballroom

- ~Two-way flat plate slab found to be
 - comparative to existing in Technical Assignment #2

Change Structural System to Concrete

- ~Eliminate fireproofing
- ~Increase mechanical cavity space
- ~Reduce cost
- ~Reduce Schedule
- ~Improve acoustics for ballroom
- ~Improve acoustics for floors adjacent to the ballroom

~Two-way flat plate slab found to be

comparative to existing in Technical Assignment #2

Change Structural System to Concrete

- ~Eliminate fireproofing
- ~Increase mechanical cavity space

- ~Improve acoustics for ballroom
- ~Improve acoustics for floors adjacent to the ballroom

~Two-way flat plate slab found to be

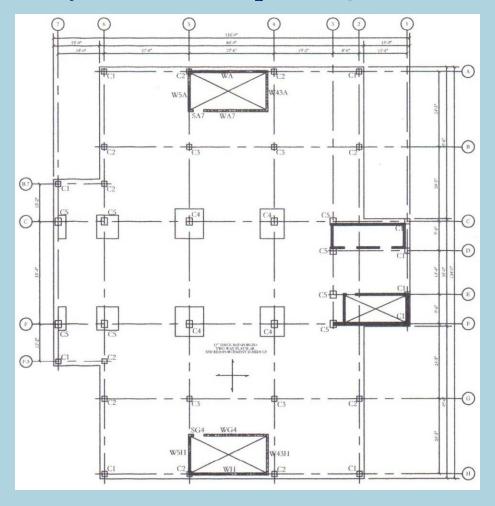
comparative to existing in Technical Assignment #2

Change Structural System to Concrete

- ~Eliminate fireproofing
- ~Increase mechanical cavity space

Red Compare Cost & Schedule of Existing vs. Proposed ~Reduce Schedule

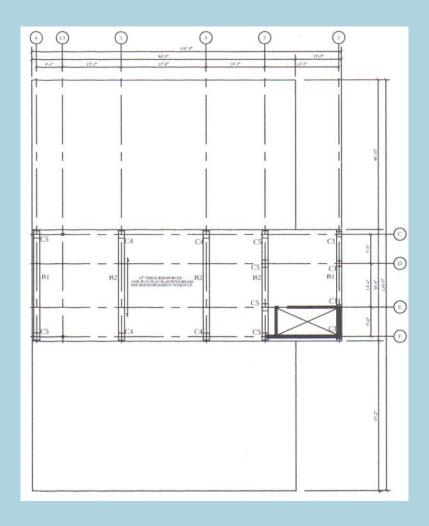
Compare Acoustic Performance of Existing vs. ~Improve acoustics for floors alroposed ballroom



PROPOSED FRAMING SYSTEM

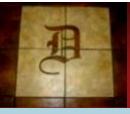
~1st-4th Floors: 12" two-way flat slab; #5 spaced @ 12" o.c. each way

~5th Floor: 14" two-way flat slab, #5 spaced @ 10" o.c. each way

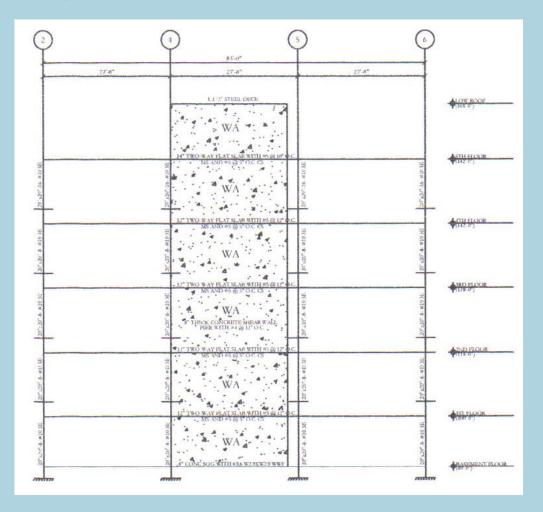


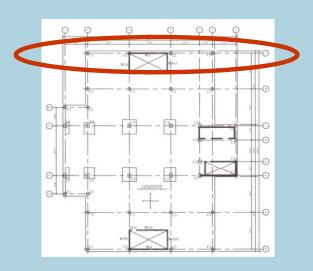
PROPOSED FRAMING SYSTEM

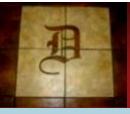
~6th Floor: 12" one-way slab with beams, #5 spaced @ 9" o.c. each way



- ~Shear walls replace existing North and South masonry stair towers
- ~8" thick shear walls with #4 spaced @ 12" o.c. vertical & #4 spaced @ 10" o.c. horizontal

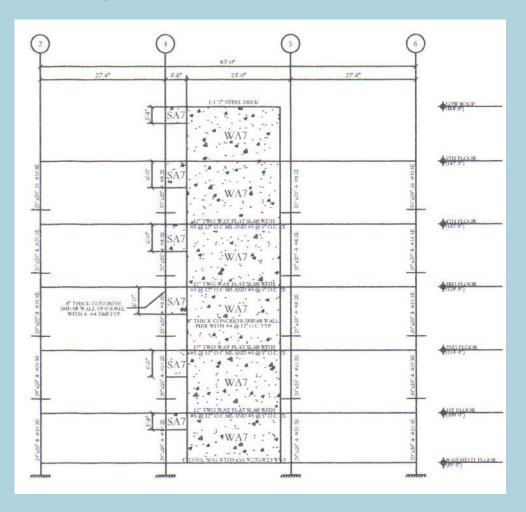

Personal Photo: Taken August 16, 2007

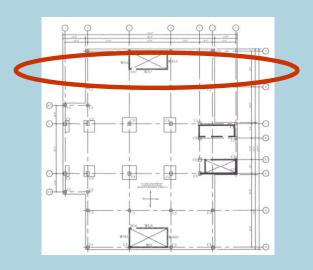




East-West Direction

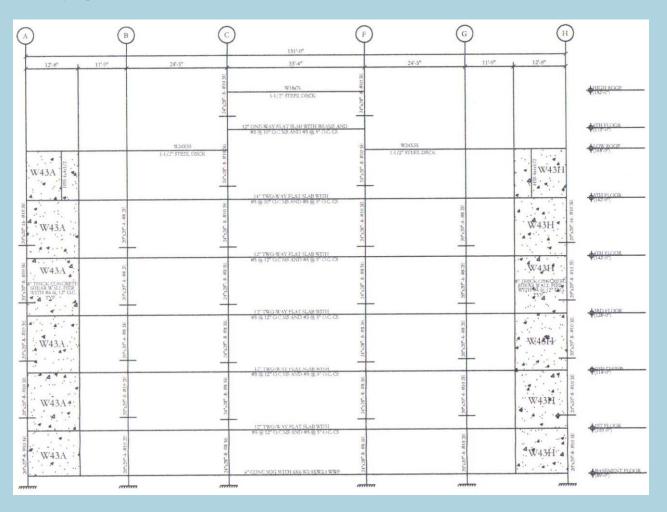
Line A

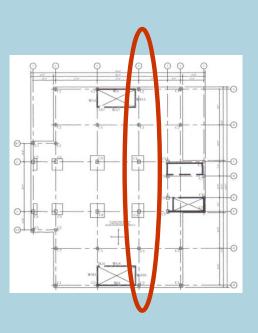


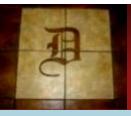


East-West Direction

Line A7

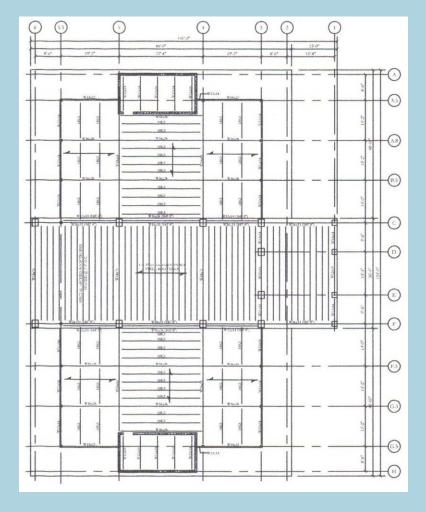


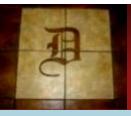




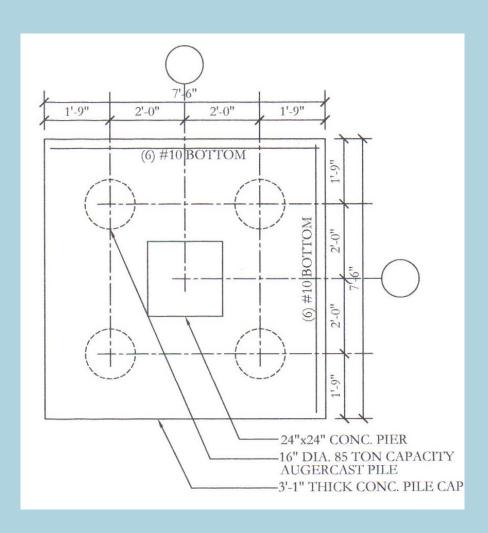
North-South Direction

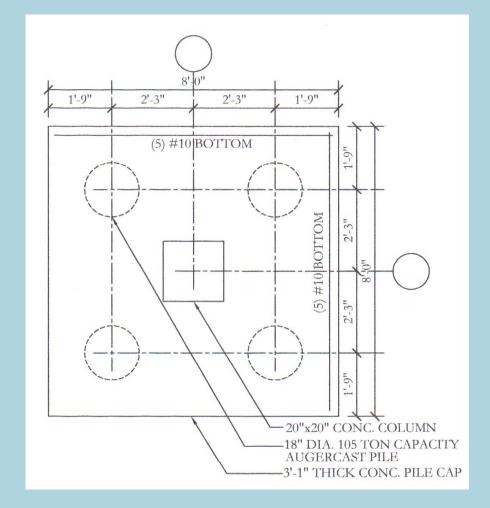
Line 4

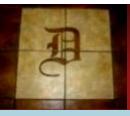



PROPOSED ROOF FRAMING SYSTEM

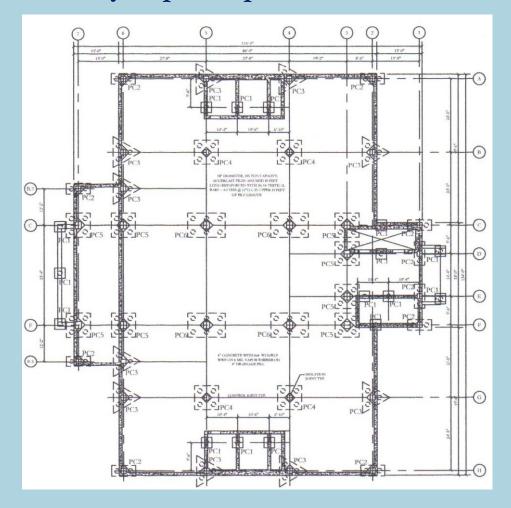
- ~Light steel framing with open web steel joists
- ~1-1/2" metal roof deck


APRIL 15, 2008



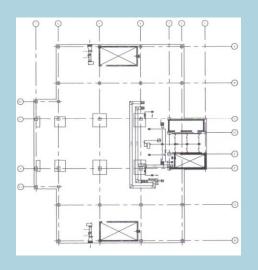

PROPOSED FOUNDATION SYSTEM

~Pile cap configurations controlled by geometry



PROPOSED FOUNDATION SYSTEM

- ~18" dia. augercast piles with pile caps; 105 ton compressive capacity
- ~Columns connect directly to pile caps



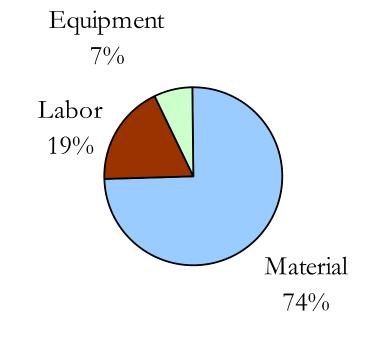
DEPTH CONCLUSIONS

Mechanical Cavity Space Comparison

Floor	Existing Steel Structural System	Proposed Concrete Structural System	Increase
1st Floor	2'-3"	3'-0"	9"
2nd Floor	2'-3"	3'-0"	9"
3rd Floor	2'-3"	3'-0"	9"
4th Floor	2'-3"	3'-0"	9"
5th Floor	2'-3"	2'-10"	7"
6th Floor	2'-3"	2'-6"	3"

DEPTH CONCLUSIONS

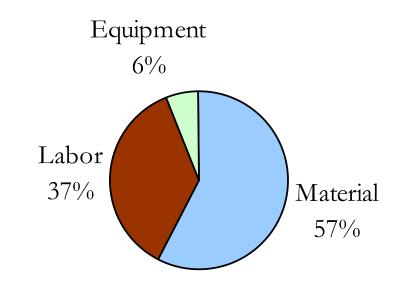
- ~Foundations not as dramatically affected as expected
- ~Moment connections eliminated
- ~Reduced fireproofing, but did not eliminate
- ~Increased mechanical cavity space



COST COMPARISON

Existing System Cost

Material	Labor	Equipment	Total
\$1,530,000	\$384,000	\$140,000	\$2,059,000



COST COMPARISON

Proposed System Cost

Material	Labor	Equipment	Total
\$952,000	\$611,000	\$96,000	\$1,664,000

COST COMPARISON

Existing vs. Proposed Cost Comparison

System	Total
Existing	\$2,059,000
Proposed	\$1,664,000
Difference	-\$395,000

Reduction of Cost by 20%

SCHEDULE COMPARISON

Existing System Schedule

Start Date	Finish Date	Duration (months)
Monday, June 2, 2003	Friday, December 24, 2004	18

Personal Photo: Taken August 16, 2007

SCHEDULE COMPARISON

Proposed System Schedule

Start Date	Finish Date	Duration (months)
Monday, June 2, 2003	Wednesday, June 22, 2005	24

Personal Photo: Taken August 16, 2007

SCHEDULE COMPARISON

Existing vs. Proposed Schedule Comparison

System	Duration (months)
Existing	18
Proposed	24
Difference	+6

Increase of Schedule by 6 months

REVERBERATION TIME COMPARISON

Existing System Half Occupancy Reverberation Time

Frequency	Desired Reverberation Time (s)	Actual Reverberation Time (s)
125 Hz	1.43	0.55
500 Hz	1.10	0.58
4000 Hz	0.85	0.36

Existing System Full Occupancy Reverberation Time

Frequency	Desired Reverberation Time (s)	Actual Reverberation Time (s)
125 Hz	1.43	0.54
500 Hz	1.10	0.55
4000 Hz	0.85	0.35

REVERBERATION TIME COMPARISON

Proposed System Half Occupancy Reverberation Time

Frequency	Desired Reverberation Time (s)	Actual Reverberation Time (s)
125 Hz	1.43	1.55
500 Hz	1.10	2.11
4000 Hz	0.85	0.73

Proposed System Full Occupancy Reverberation Time

Frequency	equency Desired Reverberation Time (s) Actual Reverberation Time (s	
125 Hz	1.43	1.46
500 Hz	1.10	1.77
4000 Hz	0.85	0.68

REVERBERATION TIME COMPARISON

Existing vs. Proposed System Reverberation Time Comparison

(based upon full occupancy)

Frequency	Desired Reverberation Time (s)	Existing Reverberation Time (s)	Proposed Reverberation Time (s)
125 Hz	1.43	0.54	1.46
500 Hz	1.10	0.55	1.77
4000 Hz	0.85	0.35	0.68

Increased Reverberation Time

SOUND TRANSMISSION COMPARISON

Existing System Sound Transmission Class

Floor System	Floors	STC Rating
5" Concrete on 2" Composite Steel Deck	All	
3" Reinforced Concrete Slab	All	39

Personal Photo: Taken August 16, 2007

SOUND TRANSMISSION COMPARISON

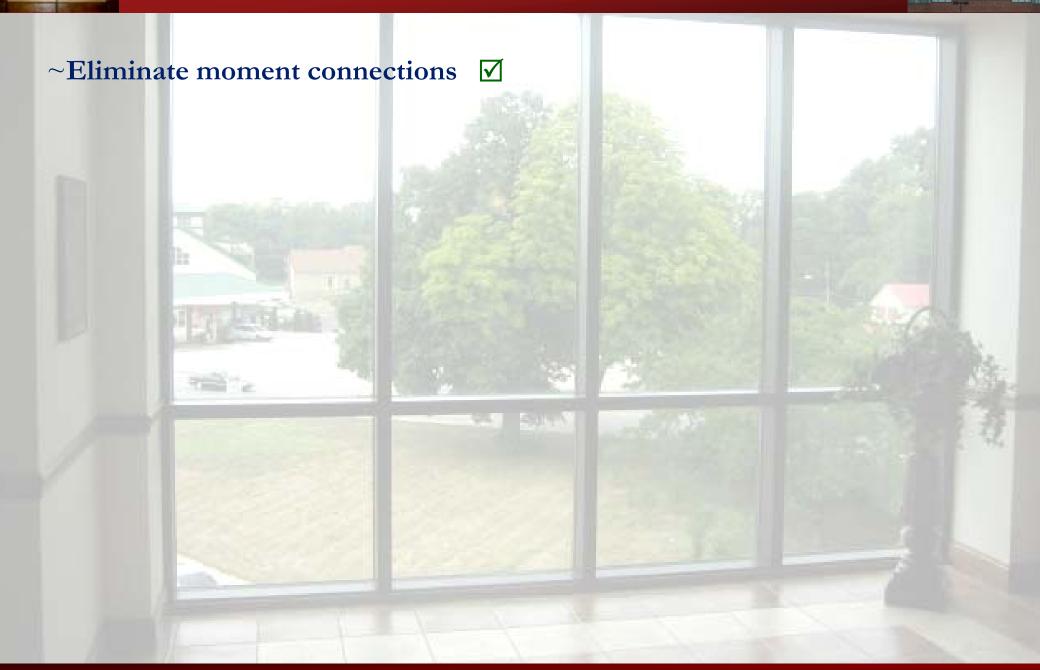
Proposed System Sound Transmission Class

Floor System	Floors	STC Rating
12" Reinforced Concrete Slab	1st-4th, 6th	88
14" Reinforced Concrete Slab	5th	99

Personal Photo: Taken August 16, 2007

SOUND TRANSMISSION COMPARISON

Existing vs. Proposed System Sound Transmission Class


(based upon 5th floor)

System	STC Rating
Existing	39
Proposed	99
Difference	+60

Increase of Sound Transmission Class by 60

APRIL 15, 2008

- ~Eliminate moment connections
- ~Eliminate fireproofing 🗵

- ~Eliminate moment connections
- ~Eliminate fireproofing 🗵
- ~Increase mechanical cavity space ✓
- ~Reduce cost 🔽

- ~Eliminate moment connections
- ~Eliminate fireproofing 🗵
- ~Increase mechanical cavity space ✓
- ~Reduce cost ✓
- ~Reduce Schedule 🗵

- ~Eliminate moment connections
- ~Eliminate fireproofing 🗵
- ~Increase mechanical cavity space ✓
- ~Reduce cost **V**
- ~Reduce Schedule 🗵
- ~Improve acoustics for ballroom <a>

- ~Eliminate fireproofing 🗵
- ~Reduce cost **V**
- ~Reduce Schedule 🗵
- ~Improve acoustics for ballroom <a>
- ~Improve acoustics for floors adjacent to the ballroom 🗹

- ~Eliminate fireproofing 🗵
- ~Reduce cost 🗹
- ~Reduce Schedule 🔀
- ~Improve acoustics for ballroom 🗹
- ~Improve acoustics for floors adjacent to the ballroom

- ~Eliminate moment connections
- ~Eliminate fireproofing 🗵
- ~Reduce cost
- ~Reduce Schedule X
- ~Improve acoustics for ballroom <a>
- ~Improve acoustics for floors adjacent to the ballroom

Proposed system not recommended due to increase in schedule.

THANK YOU & CREDITS

Owner & General Contractor:

Bob Duncan &

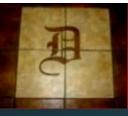
all The Duncan Center team

Structural Engineer:

Baker, Ingram & Associates

Architect:

Jackson Architects


Penn State Architectural Engineering Faculty

QUESTIONS?

